威尼斯人娱乐场

清华主页 EN
导航菜单 威尼斯人娱乐场

Quantitative homogenization of convex Hamilton-Jacobi equations with Neumann type boundary conditions

来源: 02-27

威尼斯人娱乐场
威尼斯人娱乐场
威尼斯人娱乐场
威尼斯人娱乐场

时间:Fri., 9:00-10:00am Feb. 28, 2025

地点:C548, Shuangqing Complex Building A

主讲人:Panrui Ni

Organizer:

荆文甲


Speaker:

Panrui Ni 倪盼睿

复旦大学上海数学中心/日本东京大学数学系

Time:

Fri., 9:00-10:00am

Feb. 28, 2025

Venue:

C548, Shuangqing Complex Building A

Title:

Quantitative homogenization of convex Hamilton-Jacobi equations with Neumann type boundary conditions

Abstract:

We study the periodic homogenization for convex Hamilton-Jacobi equations on perforated domains under the Neumann type boundary conditions. We consider two types of conditions, the oblique derivative boundary condition and the prescribed contact angle boundary condition, which is important in the front propagation. We first establish the representation formula by using the Skorokhod problem and modified Lagrangians. We then obtain the optimal rate of convergence O(ε) for homogenization by developing techniques in \cite{TY, HJMT} to apply to the Neumann type problems.

返回顶部
威尼斯人娱乐场相关的文章